Решения и критерии проверки задач Второго этапа

IX открытого регионального творческого конкурса учителей математики

2 этап, 1 тур, 24 марта 2020 года Алгебра и теория чисел

Каждая задача оценивается в *7 баллов*. В случае отсутствия специальных критериев по задаче, её решение оценивается по приведённой ниже таблице:

Общие критерии для оценивания решений олимпиадных задач	
Баллы	Правильность (ошибочность) решения
7	Полное верное решение.
6–7	Верное решение, но имеются небольшие недоче-
	ты, в целом не влияющие на решение.
5–6	Решение в целом верное. Однако решение содер-
	жит ошибки, либо пропущены случаи, не влия-
	ющие на логику рассуждений.
3-4	Верно рассмотрен один из существенных случа-
	ев.
2	Доказаны вспомогательные утверждения, по-
	могающие в решении задачи.
0-1	Рассмотрены отдельные случаи при отсутствии
	правильного решения.
0	Решение неверное, продвижения отсутствуют.
0	Решение отсутствует.

Ниже приведены решения задач и специальные критерии для их оценивания.

1. Докажите, что при x>1 выполняется неравенство $\frac{1}{\sqrt{x}}<\sqrt{x+1}-\sqrt{x-1}<\frac{1}{\sqrt{x-1}}.$

Решение. Заметим, что x > 1, и перепишем неравенство в виде:

$$\frac{1}{\sqrt{x}} + \sqrt{x-1} < \sqrt{x+1} < \frac{1}{\sqrt{x-1}} + \sqrt{x-1}.$$

Рассмотрим его левую часть: $\frac{1}{\sqrt{x}} + \sqrt{x-1} < \sqrt{x+1}$. Так как обе части неренства неотрицательны, оно равносильно преобразуется следующим образом:

$$\frac{1}{x} + 2\frac{\sqrt{x-1}}{\sqrt{x}} + x - 1 < x + 1,$$

$$2\frac{\sqrt{x-1}}{\sqrt{x}} < 2 - \frac{1}{x}.$$

Последнее неравенство в свою очередь равносильно системе:

$$\begin{cases} x > 1 \\ 2 - \frac{1}{x} > 0 \\ 4\frac{x - 1}{x} < 4 - \frac{4}{x} + \frac{1}{x^2} \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ x \in (-\infty; 0) \cup (\frac{1}{2}; +\infty) \Leftrightarrow x > 1. \\ \frac{1}{x^2} > 0 \end{cases}$$

Аналогичным образом рассматриваем правую часть неравенства:

$$\sqrt{x+1} < \frac{1}{\sqrt{x-1}} + \sqrt{x-1},$$

$$x+1 < \frac{1}{x-1} + x - 1 + 2,$$

$$0 < \frac{1}{x-1},$$

$$x > 1.$$

Итак, при x > 1 исходное неравенство справедливо.

Критерии. Логические ошибки при решении неравенств с иррациональностью. В частности, неверное применение метода равносильных преобразований — 0 баллов.

Доказано одно неравенство из двух -2 балла.

2. Целые числа k, s, t таковы, что $(k+s+t)^2 = -(ks+st+tk)$, а попарные суммы чисел k, s, t не равны 0. Докажите, что произведение любых двух из чисел k+s, s+t, t+k делится на третье.

Решение. Способ 1. Докажем делимость $(k+s)(s+t) = ks + kt + s^2 + st$ на t+k. По условию $(k+s+t)^2 + ks + st + tk = 0$, 0 : t+k. Так как $ks + kt + s^2 + st = (k+s+t)^2 + ks + st + tk - (k+t)^2 - 2s(k+t)$, то (k+s)(s+t) : t+k. Аналогично выражаем (k+s)(t+k) через кратные s+t, а (s+t)(t+k) через кратные k+s.

Способ 2. Равенство $(k + s + t)^2 = -(ks + st + tk)$ можно переписать в виде

$$(k+s)(s+t) + (k+s)(t+k) + (s+t)(t+k) = 0,$$

откуда выводится, что (k+s)(s+t) кратно t+k. Аналогично получаем два других соотношения.

Критерии. Доказано только одно неравенство из трёх. — 6 баллов. (Следовало либо доказать все три соотношения, либо упомянуть, что доказательство оставшихся двух про- изводится аналогично.)

3. Найдите все значения c, при каждом из которых система уравнений

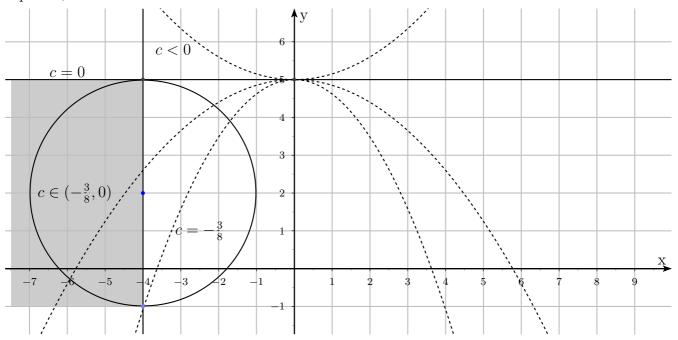
$$\begin{cases} y - 5 = cx^2 \\ x + \sqrt{5 - y^2 + 4y} = -4 \end{cases}$$
 имеет хотя бы одно решение.

Решение. При ограничениях $5 - y^2 + 4y \ge 0$, $-4 - x \ge 0$ уравнение $x + \sqrt{5 - y^2 + 4y} = -4$ можно переписать в виде:

$$5 - y^2 + 4y = (-4 - x)^2,$$

$$(x+4)^2 + (y-2)^2 = 3^2.$$

Таким образом, график второго уравнения представляет собой полуокружность радиуса 3 с центром в (-4;2) в диапазоне $x \le -4, -1 \le y \le 5$. На рисунке этот диапазон выделен серым цветом.



При c=0 прямая y=5 будет иметь с полуокружностью одну точку пересечения.

При c > 0 парабола $y = cx^2 + 5$ не пересекает полуокружность.

При c<0 графики будут иметь одну точку пересечения, если парабола пересекает прямую x=-4 при $-1\leqslant y\leqslant 5$. Найдем, при каком c парабола проходит через нижнюю точку (-4;-1) :

$$-1 = 16c + 5,$$
$$c = -\frac{3}{8}.$$

Это означает, что при $c \in [-\frac{3}{8},0]$ графики имеют точку пересечения.

Ответ. $[-\frac{3}{8}, 0]$.

Критерии. Получено множество значений параметра c (случайно совпавшее с искомым множеством) из области допустимых значений переменной y второго уравнения и условия $x \geqslant -4$ без обоснования существования решения рассматриваемой системы уравнений — 3 балла.

4. Для каких целых n уравнение $\frac{3xy-1}{x+y}=n$ имеет решение в целых x и y?

Решение. Выразим $x = \frac{1+ny}{3y-n}$. Будем теперь подбирать y и n так, чтобы знаменатель был равен ± 1 . Это гарантирует существование целочисленного решения уравнения.

Случай 1. Пусть n=3k+1. Тогда при y=k $x=\frac{1+(3k+1)k}{3k-3k-1}=-3k^2-k-1$. Пары целых чисел $(-3k^2-k-1;k)$ являются решениями данного уравнения.

Случай 2. Пусть n=3k-1. При y=k $x=\frac{1+(3k-1)k}{3k-3k+1}=3k^2-k+1$. Пары целых чисел $(3k^2-k+1;k)$ являются решениями данного уравнения.

Cлучай 3. Пусть n=3k. Тогда из равенства 3xy-1=n(x+y) следует, что 1=3xy-n(x+y) : 3, что невозможно.

Ответ. Для всех целых n, не кратных 3.

Критерии. Доказано, что при некоторых натуральных n уравнение имеет решение. — 0 баллов.

Доказано, что при n, не кратном 3, уравнение не имеет решения. — 3 балла.

5. Существует ли такая функция $f(x) = \frac{P(x)}{Q(x)} \neq const$, где P(x) и Q(x) — полиномы с действительными коэффициентами, что $f(x) = f(1-x) = f\left(\frac{1}{x}\right)$.

Решение. Способ 1. Заметим, что заменив x на $\frac{1}{x}$ в многочлене $h(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$ мы получим $\frac{a_0 + a_1 x + \dots + a_n x^n}{x^n}$. Будем считать, что набор коэффициентов многочлена (a_0, a_1, \dots, a_n) является палиндромом, а значит $h\left(\frac{1}{x}\right) = \frac{h(x)}{x^n}$. Для многочленов $f_1(x) = x^2$ и $f_2(x) = (1-x)^2$ выполняются равенства $f_1(1-x) = f_2(x)$, $f_2(1-x) = f_1(x)$ и $f_1\left(\frac{1}{x}\right) = \frac{1}{x^2}$, $f_2\left(\frac{1}{x}\right) = \frac{f_2(x)}{x^2}$. Примем в качестве Q(x) произведение $x^2(1-x)^2$, тогда отношение $\frac{h(x)}{Q(x)}$ после замены x на $\frac{1}{x}$ равно $\frac{h(x)x^4}{x^n f_2(x)}$. Нетрудно увидеть, что при n=6 знаменатель последней дроби равен $f_1(x)f_2(x)$. Найдем многочлен $h(x) = ax^6 + bx^5 + cx^4 + dx^3 + cx^2 + bx + a$, удовлетворяющий условию h(1-x) = h(x). Например, методом неопределенных коэффициентов, получим общее решение для коэффициентов h(x): b=-3a, d=5a-2c. Положим a=1, c=0, тогда $h(x) = x^6 - 3x^5 + 5x^3 - 3x + 1$.

Таким образом, найдены многочлены $P(x) = x^6 - 3x^5 + 5x^3 - 3x + 1$, $Q(x) = x^2(1-x)^2$, для которых справедливо требование задачи.

Способ 2. Искомая функция может быть такой:

$$f(x) = x^{2} + \frac{1}{x^{2}} + (1-x)^{2} + \frac{1}{(1-x)^{2}} + \frac{x^{2}}{(1-x)^{2}} + \frac{(1-x)^{2}}{x^{2}}.$$

После преобразования получаем, что $P(x) = 2x^6 - 6x^5 + 9x^4 - 8x^3 + 9x^2 - 6x + 2$, $Q(x) = x^2(1-x)^2$.

Из представленных решений видим, что функция f(x) определяется неоднозначно.

Ответ. Существует.

6. Различные натуральные числа $a,\ b,\ c,\ d$ меньше простого числа $p,\ a$ числа $a^4,\ b^4,\ c^4,\ d^4$ дают одинаковые остатки при делении на p. Докажите, что $a^{999}+b^{999}+c^{999}+d^{999}$ делится на a+b+c+d.

Решение. Всюду далее мы будем использовать одно из понятий теории чисел — cpashu-mocmb по modyno — и его свойства.

Целые числа x и y называются cpaвнимыми по модулю m (где m — натуральное число, отличное от 1), если x и y при делении на m дают одинаковые остатки.

Этот факт записывается так:

$$x \equiv y \pmod{m}$$
.

К примеру, $8 \equiv 23 \pmod{5}$, так как оба числа 8 и 23 при делении на 5 дают остаток 3.

Таким образом, из условия следует, что $a^4 \equiv b^4 \equiv c^4 \equiv d^4 (\text{mod } p)$.

Если a^4 и b^4 дают одинаковые остатки при делении на p, то разность этих чисел $a^4-b^4=$ $=(a^2-b^2)(a^2+b^2)$ кратна p. Поскольку p — простое, либо a^2-b^2 , либо a^2+b^2 делится на p. Значит, для любых двух из четырёх квадратов a^2 , b^2 , c^2 и d^2 или их сумма делится на p, или разность. Иначе говоря, они либо сравнимы по модулю p, либо их сумма кратна p. Заметим, что если квадраты двух различных натуральных чисел x^2 и y^2 (x, y < p) сравнимы по модулю p, то (x-y)(x+y) кратно p. Но разность x-y меньше p и отлична от 0. Значит, x+y кратно p, что возможно только в случае, когда x+y=p.

Покажем теперь, что никакие три квадрата из этих четырёх не сравнимы друг с другом. Пусть, к примеру, $a^2 \equiv b^2 \equiv c^2 \pmod{p}$. Но тогда $a+b=p,\ a+c=p,$ откуда b=c, что противоречит условию.

Значит, из $a^2 \equiv b^2 \pmod{p}$ следует, что $a^2 \equiv -c^2 \pmod{p}$ и $a^2 \equiv -d^2 \pmod{p}$. Тогда $c^2 \equiv d^2 \pmod{p}$. Итак, эти четыре квадрата разобъются на две пары чисел, сравнимых друг с другом. Отсюда, a+b=p и c+d=p. Получили, что a+b+c+d=2p.

Так как $a \equiv -b \pmod p$, то $a^{999} \equiv (-b)^{999} \equiv -b^{999} \pmod p$. А значит, $a^{999} + b^{999} \equiv 0 \pmod p$, и аналогично, $c^{999} + d^{999} \equiv 0 \pmod p$. Тогда сумма $S = a^{999} + b^{999} + c^{999} + d^{999}$ кратна p. С другой стороны, простое число p, очевидно, больше 2, поэтому a и b, сумма которых равна p, имеют разную чётность. Так же числа c и d разной чётности. Но, значит, сумма S чётна и кратна p, откуда получаем, что она делится на 2p, то есть на a+b+c+d.